Affinoids in the Lubin-Tate perfectoid space and simple epipelagic representations

Naoki Imai (Joint work with Takahiro Tsushima)

Abstract: We will construct affinoids in the Lubin-Tate perfectoid space, and discuss their relation with the local Langlands correspondence (LLC) and the local Jacquet-Langlands correspondence (LJLC) for representations of exponential Swan conductor 1, which we call simple epipelagic.

Notation: Let K be a non-archimedean local field. Let \mathfrak{p} be the prime ideal of K, and k be the residue field of K. We put q = |k|.

Tame case 3

Consider the case where $p \nmid n$. Then we have

 $\tau \simeq \operatorname{Ind}_{W_{I}}^{W_{K}} \chi,$

where L is a totally ramified extension of K, and χ is a character of W_L . We can construct a CM point $\xi_L \in \mathcal{M}_{\mathbf{C}}$ using a 1-dimensional

PEPS-égalité "Correspondances de Langlands" - Projet INTGER (GA no 266638).

Lubin-Tate perfectoid space

Let $LT_n(\mathfrak{p}^i)$ be the Lubin-Tate space with level \mathfrak{p}^i for the 1dimensional formal \mathcal{O}_K -module of height n.

The Lubin-Tate perfectoid space \mathcal{M} is a limit of $LT_n(\mathfrak{p}^i)$ with respect to i in some sense. We can construct \mathcal{M} as the generic fiber of some formal scheme $\operatorname{Spf} A$. The structure of A is given by the following theorem due to Weinstein:

Theorem ([We]). We have a natural isomorphism

$$A \simeq \mathcal{O}_{\mathbf{C}}[[X_1^{1/q^{\infty}}, \dots, X_n^{1/q^{\infty}}]] / (\delta(X_1, \dots, X_n)^{q^{-m}} - t^{q^{-m}})_{m \ge 0},$$

formal \mathcal{O}_L -module over \mathcal{O}_L^{ur} . We define an affinoid $\mathcal{X}^L \subset \mathcal{M}_C$ by

$$v\left(\frac{X_i}{\xi_{L,i}} - 1\right) \ge \frac{1}{2nq^{i-1}} \quad \text{for } 1 \le i \le n.$$

The special fiber of a formal model of \mathcal{X}^L is isomorphic to the perfection of the variety defined by

$$z^{q} - z = \sum_{1 \le i \le j \le n-1} y_{i} y_{j} \quad \text{in } \mathbb{A}^{n}_{k^{\text{ac}}}.$$

Wild case

Consider the case where $p \mid n$. Assume that $n = p^e$ for simplicity. Then τ can not be written as an induction of a character. So we have no expectation that the desired affinoid lives near a CM point. However, there is a tamely ramified extension T/K such that

$$\tau|_{W_T} \simeq \operatorname{Ind}_{W_M}^{W_T} \chi,$$

where we can express $\delta(X_1, \ldots, X_n)$ and t explicitly. Let $\mathbf{C} = \widehat{\overline{K}}$, and D be the central division algebra over K of invariant 1/n. We put

 $G = GL_n(K) \times D^{\times} \times W_K.$

The base change $\mathcal{M}_{\mathbf{C}}$ has an action of

 $G^{1} = \{(g, d, \sigma) \in G \mid \det(g) = \operatorname{Nrd}_{D/K}(d)\operatorname{Art}_{K}^{-1}(\sigma)\}.$

Boyarchenko-Weinstein constructed a family of affinoid in $\mathcal{M}_{\mathbf{C}}$ based on the above theorem, and relate them with LLC and LJLC for representations of "unramified type" in [BW]. We want to treat the case for "ramified type". Simple epipelagic representations are the representations of "ramified type" with the smallest conductor.

where χ is a character of W_M . We can describe explicitly a finite Galois extension L/M such that χ factor through $\operatorname{Gal}(L/M)$. We will modify coordinates of a CM point using the extension L/T. Let ξ be the modified point. Then we can define the desired affinoid using ξ . The definition is similar to \Im , but a little more complicated.

We put $f = log_p q$ and m = gcd(e, f). Then the special fiber of a formal model of the affinoid is isomorphic to the perfection of the variety defined by

$$z^{p^m} - z = y^{p^e+1} - \sum_{1 \le i \le j \le n-2} y_i y_j \quad \text{in } \mathbb{A}^n_{k^{\text{ac}}}.$$

LLC and LJLC 5

Cohomology of the above Artin-Schreier varieties realize correspondences between representation of $GL_n(K)$, D^{\times} and W_K . It is a non-

2 Result

Theorem. We have a family of affinoids $\{\mathcal{X}_i\}_{i\in I}$ in $\mathcal{M}_{\mathbf{C}}$ and their formal models $\{\mathfrak{X}_i\}_{i\in I}$ such that

• the special fiber $\overline{\mathfrak{X}_i}$ of \mathfrak{X}_i is isomorphic to the perfection of a smooth Artin-Schreier variety,

• the stabilizer $H_i \subset G^1$ of \mathcal{X}_i naturally acts on $\overline{\mathfrak{X}_i}$, and • c-Ind^G_{H_i} $H^{n-1}_{c}(\overline{\mathfrak{X}}_{i}, \overline{\mathbb{Q}}_{\ell})$ realizes the LLC and the LJLC for simple epipelagic representations.

We will explain how to construct an affinoid in the above family. Let τ be a simple epipelagic representation of W_K .

trivial problem to show the obtained correspondences are LLC and LJLC. We can show it for LJLC based on the usual characterization by the character relation. For LLC, we use a simple characterization of LLC for simple epipelagic representations in [BH].

References

[BW] M. Boyarchenko and J. Weinstein, Maximal varieties and the local langlands correspondence for GL(n), to appear in J. Amer. Math. Soc.

[BH] C. J. Bushnell and G. Henniart, Langlands parameters for epipelagic representations of GL_n , Math. Ann. 358, No. 1-2 (2014), 443–463.

[We] J. Weinstein, Semistable models for modular curves of arbitrary level, preprint.