Around Langlands correspondences 17-20 July 2015 On L-packets and depth for $S L_{2}(K)$

Sérgio Mendes

ISCTE-IUL, Lisbon
(Joint work with Anne-Marie Aubert and Roger Plymen)

PEPS-égalité "Correspondances de Langlands" - Projet INTEGER (GA no 266638).

Abstract

Let $\mathcal{G}=\mathrm{SL}_{2}(K)$ with K a local function field of characteristic 2 . We review the Artin-Schreier symbol for the field K, and show that this leads to a parametrization of certain L-packets in the smooth dual of \mathcal{G}. The L-packets in the principal series are parametrized by quadratic extensions, and the supercuspidal L-packets of cardinality 4 are parametrized by biquadratic extensions. Each supercuspidal packet of cardinality 4 is accompanied by a singleton packet for $\mathrm{SL}_{1}(D)$. We provide lower bounds for the depths of the irreducible constituents of all these L-packets for $\mathrm{SL}_{2}(K)$ and its inner form $\mathrm{SL}_{1}(D)$.

Quadratic characters

Let E / K be the quadratic extension given by

$$
E=K\left(\wp^{-1}\left(u_{j} \varpi^{-2 n-1}\right)\right),
$$

where $\mathcal{B}=\left\{u_{1}, \ldots, u_{f}\right\}$ is a basis of the \mathbb{F}_{2}-linear space $\mathbb{F}_{q}=\mathbb{F}_{2 f}$.
The Artin-Schreier symbol creates a sequence of quadratic characters

$$
\begin{equation*}
\chi_{n, j}(\alpha):=\left(\alpha, u_{j} \varpi^{-2 n-1}+\wp(K)\right] \tag{1}
\end{equation*}
$$

with $n \geq 0$ and $j=1, \ldots, f$.

Theorem (Explicit formula for the Artin-Schreier symbol)

Let K be a local function field of characteristic 2 with residue degree f. Then,

$$
\chi_{n, j}(\alpha)=\sum_{i \mid 2 n+1} \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(u_{j} \theta_{i}^{(2 n+1) / i}\right)
$$

where $\alpha=\varpi^{k} \theta_{0} \prod_{i \geq 1}\left(1+\theta_{i} \varpi^{i}\right) \in K^{\times}, n \geq 0$ and $j=1, \ldots, f$.

Depth

The depth of a Langlands parameter ϕ is defined as follows. Let r be a real number, $r \geq 0$, let $\operatorname{Gal}\left(K_{s} / K\right)^{r}$ be the r-th ramification subgroup of the absolute Galois group of K. Then the depth of ϕ is the smallest number $d(\phi) \geq 0$ such that ϕ is trivial on $\operatorname{Gal}\left(K_{s} / K\right)^{r}$ for all $r>d(\phi)$.
The depth $d(\pi)$ of an irreducible \mathcal{G}-representation π was defined by Moy and Prasad in terms of filtrations $P_{x, r}\left(r \in \mathbb{R}_{\geq 0}\right)$ of the parahoric subgroups $P_{x} \subset \mathcal{G}$.

L-packets of cardinality 4

Following [We], denote by α, β, γ the images in $\mathrm{PSL}_{2}(\mathbb{C})$ of the elements

$$
z_{\alpha}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad z_{\beta}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad z_{\gamma}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right),
$$

in $\mathrm{SL}_{2}(\mathbb{C})$. Note that $z_{\alpha}, z_{\beta}, z_{\gamma} \in \mathrm{SU}_{2}(\mathbb{C})$ so that

$$
\alpha, \beta, \gamma \in \mathrm{PSU}_{2}(\mathbb{C})=\mathrm{SO}_{3}(\mathbb{R}) .
$$

Denote by J the group generated by α, β, γ :

$$
J:=\{\epsilon, \alpha, \beta, \gamma\} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

The group J is unique up to conjugacy in $G=\mathrm{PSL}_{2}(\mathbb{C})$.
The pre-image of J in $\mathrm{SL}_{2}(\mathbb{C})$ is the group $\left\{ \pm 1, \pm z_{\alpha}, \pm z_{\beta}, \pm z_{\gamma}\right\}$ and is isomorphic to the group U_{8} of unit quaternions $\{ \pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$.

Let \mathbf{W}_{K} denote the Weil group of K. Let L / K be a biquadratic extension of K. An identification $\operatorname{Gal}(L / K) \simeq J$, composed with the inclusion $J \rightarrow \mathrm{SO}_{3}(\mathbb{R})$ determines a Langlands parameter as follows:

$$
\begin{equation*}
\phi=\phi_{L}: \mathbf{W}_{K} \rightarrow \operatorname{Gal}(L / K) \rightarrow \mathrm{SO}_{3}(\mathbb{R}) \subset \operatorname{PSL}_{2}(\mathbb{C}) \tag{2}
\end{equation*}
$$

Define

$$
\begin{equation*}
S_{\phi}=C_{\mathrm{PSL}_{2}(\mathbb{C})}(\mathrm{im} \phi) \tag{3}
\end{equation*}
$$

Define the new group

$$
\mathcal{S}_{\phi}=C_{\mathrm{SL}_{2}(\mathbb{C})}(\mathrm{im} \phi)
$$

The article [ABPS2] finalizes the local Langlands correspondence for any inner form of SL_{n} over all local fields.

We have the short exact sequence

$$
1 \rightarrow \mathcal{Z}_{\phi} \rightarrow \mathcal{S}_{\phi} \rightarrow S_{\phi} \rightarrow 1
$$

with $\mathcal{Z}_{\phi}=\mathbb{Z} / 2 \mathbb{Z}$.
Let D be a central division algebra of dimension 4 over K, and let Nrd denote the reduced norm on D^{\times}. Define

$$
\mathrm{SL}_{1}(D)=\left\{x \in D^{\times}: \operatorname{Nrd}(x)=1\right\} .
$$

Then $\mathrm{SL}_{1}(D)$ is an inner form of $\mathrm{SL}_{2}(K)$. In the local Langlands correspondence [ABPS2] for the inner forms of SL_{2}, the L -parameter ϕ is enhanced by elements $\rho \in \operatorname{Irr}\left(\mathcal{S}_{\phi}\right)$. Now the group $\mathcal{S}_{\phi} \simeq U_{8}$ admits four characters $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}$ and one irreducible representation ρ_{0} of degree 2 .
The parameter ϕ creates a Vogan packet with five elements, which are allocated to $\mathrm{SL}_{2}(K)$ or $\mathrm{SL}_{1}(D)$ according to central characters.

So ϕ assigns an L-packet Π_{ϕ} to $\mathrm{SL}_{2}(K)$ with 4 elements, and a singleton packet to the inner form $\mathrm{SL}_{1}(D)$. None of these packets contains the Steinberg representation of $\mathrm{SL}_{2}(K)$ and so each Π_{φ} is a supercuspidal L-packet with 4 elements.

Explicitly, ϕ assigns to $\mathrm{SL}_{2}(K)$ the supercuspidal packet

$$
\left\{\pi\left(\phi, \rho_{1}\right), \pi\left(\phi, \rho_{2}\right), \pi\left(\phi, \rho_{3}\right), \pi\left(\phi, \rho_{4}\right)\right\}
$$

and to $\mathrm{SL}_{1}(D)$ the singleton packet
$\left\{\pi\left(\phi, \rho_{0}\right)\right\}$
and this phenomenon occurs countably many times.

Theorem (Depth of ϕ_{L})

Let L / K be a biquadratic extension, let ϕ be the Langlands parameter (2), $\phi=\alpha \circ \pi_{L / K}$ with $\alpha: \operatorname{Gal}(L / K) \rightarrow \mathrm{SO}_{3}(\mathbb{R})$.
(1) If t is the highest break in the upper ramification of $\operatorname{Gal}(L / K)$ then $d(\phi)=t$. The allowed values of $d(\phi)$ are $1,3,5,7, \ldots$ except in case of two ramification breaks, when the allowed values are $3,5,7, \ldots$
(2) For every $\pi \in \Pi_{\phi}\left(\mathrm{SL}_{2}(K)\right)$ and $\pi \in \Pi_{\phi}\left(\mathrm{SL}_{1}(D)\right)$ these integers provide lower bounds:

$$
d(\pi) \geq d(\phi) .
$$

L-packets of cardinality 2
Let \mathbf{W}_{K} be the Weil group of K and define

$$
\mathbf{W}_{K} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow K^{\times}
$$

to be the projection $(g, M) \mapsto g$ followed by the Artin reciprocity map

$$
\mathbf{a}_{K}: \mathbf{W}_{K} \rightarrow K^{\times}
$$

Let E / K be a quadratic extension and let χ_{E} be the associated quadratic character of K^{\times} Let $[M]$ denote the image in $\mathrm{PSL}_{2}(\mathbb{C})$ of the element $M \in \mathrm{SL}_{2}(\mathbb{C})$. Consider the map

$$
K^{\times} \rightarrow \operatorname{PSL}_{2}(\mathbb{C}), \quad \alpha \mapsto\left[\begin{array}{cc}
\chi_{E}(\alpha) & 0 \\
0 & 1
\end{array}\right]
$$

The composite map

$$
\phi_{E}: \mathbf{W}_{K} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow K^{\times} \rightarrow \mathrm{PSL}_{2}(\mathbb{C})
$$

is then an L-parameter attached to χ_{E}. For the centralizer of the image, we have

$$
C_{\mathrm{PSL}_{2}(\mathbb{C})}\left(\operatorname{im} \phi_{E}\right)=\{1, w\}
$$

where w generates the Weyl group of the dual group $\mathrm{PSL}_{2}(\mathbb{C})$. Since there are two characters $1, \epsilon$ of $W=\{1, w\}$, there are two enhanced parameters $\left(\phi_{E}, 1\right)$ and $\left(\phi_{E}, \epsilon\right)$, which parametrize the two elements in the L-packet $\Pi_{\phi_{E}}$. We will write

$$
\begin{equation*}
\Pi_{\phi_{E}}=\left\{\pi_{E}^{1}, \pi_{E}^{2}\right\} . \tag{4}
\end{equation*}
$$

If $\gamma \in K^{s}$ is a root of $X^{2}-X-\beta \in K[X]$, the quadratic extension $K(\gamma)$ is denoted also by $K\left(\wp^{-1}(\beta)\right)$, with $\beta \in K$, where $\wp(X)=X^{2}-X$. So the quadratic character

$$
\chi_{n, j}=\left(-, u_{j} \varpi^{-2 n-1}+\wp(K)\right]
$$

is associated with the quadratic extension $E=K\left(\wp^{-1}\left(u_{j} \varpi^{-2 n-1}\right)\right)$.
There are two kinds of quadratic extensions: the unramified one $E_{0}=K\left(\gamma_{0}\right)$ and countably many totally (and wildly) ramified $E=K(\gamma)$. The unramified quadratic extension has a single ramification break for $t=-1$.
Let E / K be a quadratic totally ramified extension. According to [Da], there is a single ramification break for $t=2 n+1$. Each value $2 n+1$ occurs as a break, with $n \geq 0,1,2,3$,
Fix a basis $\mathcal{B}=\left\{u_{1}, \ldots, u_{f}\right\}$ of $\mathbb{F}_{q} / \mathbb{F}_{2}$ and let $u_{j} \in \mathcal{B}$. The next result shows how to realise the extension E / K.

Theorem (Depth of ϕ_{E})
If $E=K\left(\wp^{-1}\left(u_{j} \varpi^{-2 n-1}\right)\right)$ then
with $n=0,1,2,3,4, \ldots$.

References

[ABPS1] A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, Depth and the local Langlands correspondence, Arbeitstagung Proceedings 2013, to appear, arxiv.org/abs/1311.1606
[ABPS2] A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, The local Langlands correspondence for inner forms of SL_{n}, arxiv. org/abs/1305.2638
[Da] C.S. Dalawat, Further remarks on local discriminants, J. Ramanujan Math. Soc., (4) 25 (2010) 393-417.
[We] A. Weil, Exercices dyadiques, Invent. Math. 27 (1974) 1-22.

