MINIMISING VOLUMES IN NUMBER FIELDS

Anna Szumowicz

Jagiellonian University

Introduction

p-orderings

Bhargava introduced the notion of the generalized factorial function in the following way ([B]): **Definition 1.** Let A be a Dekind domain and \mathfrak{p} a prime ideal in A. Denote by $v_{\mathfrak{p}}$ the additive \mathfrak{p} -adic valution in A. Let $s_0, s_1 \cdots be$ a sequence of elements in A. It is called a p-ordering if for every natural number n the element s_n is chosen so that the valuation $v_{\mathfrak{p}}(\prod_{i=0}^{n-1}(s_i-s_n))$ is the lowest possible. Define

$$i_n(\mathfrak{p}) = v_{\mathfrak{p}}(\prod_{i=0}^{n-1}(s_i - s_n)).$$

Proposition 2. Let S be a subset \mathcal{O}_K with n + 1 elements. The following conditions are equivalent:

- *S* is *n*-optimal
- $Vol(S) = (\prod_{i=1}^{n} i!_K)^2$

• for every $S_1 \subseteq \mathcal{O}_K$ with n + 1 elements, Vol(S) divides $Vol(S_1)$

We return to the sketch of the proof of Theorem 2. Let us assume the contrary, that for arbitrary large *n* there exists an *n*-optimal set S. We identify \mathcal{O}_K with its image via the embedding: $\mathcal{O}_K \hookrightarrow \mathbb{C}$. By Proposition 2 the set *S* has the minimal volume. We use that information and Proposition 1 together with a geometric arguments to show that it has to be contained in some polygon *P* of area that we can control very well. We prove that *S* is enclosed by a rectangle in the first case when $d \equiv 1, 2 \pmod{4}$ and by a hexagon in the second case. The estimate on the area of *P* implies that it contains n + o(n) points from the lattice \mathcal{O}_K . Next, we show that for certain primes *p* we can find $\Omega(n)$ triples $\{x, y, z\}$ in *P* which give the same residue modulo *p*. Using Proposition 1 we show that every such triple intersects with *S* in at most two points. Hence, we demonstrate that there exists a subset of \mathcal{O}_K which is contained in the polygon, is disjoint with S and has a cardinality $\Omega(n)$. This yields a contradiction since P had n + o(n)

points and *S* is of cardinality n + 1. It can be shown that the value of $i_n(p)$ does not depend on the choice of a p-ordering. Let n be a natural number. *The generalized factorial of n is the ideal*

 $n!_A = \prod_{\mathfrak{p} \in SpecA} \mathfrak{p}^{i_n(\mathfrak{p})}.$

For a number field *K* we shall write $n!_K := n!_{\mathcal{O}_K}$.

It is interesting to know for which fields we can find a simultaneous p-ordering in \mathcal{O}_K , for every prime ideal p. This is a particular case of Bhargavas question ([B1]). Melanie Woods in [W] showed that there are no simultaneous p-orderings in imaginary quadratic number fields.

Integer valued polynomials and *n*-universal sets

Simultaneous p-orderings are connected with the notion of integer valued polynomials. Let A be an integral domain and *K* be its field of fraction.

Definition 2. Let f be a polynomial with coefficients in K. We call f integer valued if $f(A) \subseteq A$.

Sometimes there is no need to check whether $f(a) \in A$ for every $a \in A$ to know if f is integer valued. For example if $f \in \mathbb{Z}[x]$ then it is enough to check that $f(n) \in \mathbb{Z}$ for every natural number *n*.

Definition 3. We call a subset $S \subseteq A$ n-universal if for every polynomial $f \in K[X]$ of degree at most n the following equivalence holds: $f(S) \subseteq A$ if and only if $f(A) \subseteq A$.

Example All *n*-universal subsets of \mathbb{Z} with n + 1 elements are of the form $\{a, \dots, a + n\}$ for some integer *a*.

If A is an integral domain which is not a field then any n-universal set has at least n + 1 elements. Hence, the *n*-universal sets with n + 1 elements are of the particular interest. We shall call them *n*-optimal. It is well known that if $s_0, s_1, s_2, \ldots \in \mathcal{O}_K$ is a simultaneous p-ordering for all prime ideals p, then the initial fragments $\{s_0, s_1, \ldots, s_s\}$ is an *n*-universal set. In particular if there are no *n*-optimal sets elements for some natural number *n* then a simultaneous p-ordering cannot exist.

Minimal cardinality of *n*-universal sets

Using the generalized version of Proposition 1 coupled with elementary arguments we obtained the following result:

Theorem 3. Let A be a Dedekind domain. Then for every n there exists an n-universal set with n + 2 elements in A. Moreover, there exists an increasing sequence $U_0 \subseteq U_1 \subseteq \cdots$ of n-universal sets U_n with n + 2 elements in Α.

n-optimal sets in other number fields

The problem of existence of *n*-optimal sets in general number fields seems to be much harder than in the case of imaginary quadratic number fields. In the proof of Theorem 2 we relied on fact that since the *n*-optimal set has the minimal volume we can deduce a lot of information about its geometry. Unfortunately the method used requires the convexity of the norm $N_{K/Q}$ which holds only in the case $K = \mathbb{Q}$ or $K = \mathbb{Q}(\sqrt{-d})$. For general number fields we estimate the growth of volume of hypothetical *n*-optimal sets. During our attempts to prove the Theorem 2 in the general case we discovered a link with Euler-Kronecker constant.

Euler-Kronecker constants

By Proposition 2 studying the norm of the volume of *n*-optimal set is strongly tied with the generalized factorial function. The genarlized factorials provide a link with Euler-Kronecker constants. Denote by *K* a number field. Let $\zeta_K(s)$ be the Dedekind zeta function of *K*. Let $\zeta_K(s) = \frac{c_{-1}}{s-1} + c_0 + c_1(s-1) + \cdots$ be the Laurent expansion of Dedekind zeta function at s = 1.

Definition 5. ([I]) The Euleur – Kronecker constant γ_K is defined as the quotient $\frac{c_0}{c_{-1}}$ or equivalently as the constant term of a Laurent expansion of the function γ'_{K}/γ_{K} at s=1. If $K = \mathbb{Q}$ then $\gamma_{\mathbb{Q}}$ is the Euler-Mascheroni constant given by the formula

n-universal sets in Gaussian integers

Petrov and Volkov in [PV] studied the *n*-universal sets in Gaussian integers. They proved the following result:

Theorem 1. There are no n-optimal sets in $\mathbb{Z}[i]$ for n large enough.

Petrov and Volkov were also investigating the minimal cardinality of an *n*-universal sets in Gaussian integers and gave a family of examples of *n*-universal sets with $\frac{\pi}{2}n + o(n)$ elements. They conjectured that their examples realize the asymptotic lower bound on the size of an *n*-universal set in $\mathbb{Z}[i]$:

Conjecture 1. *The size of the minimal n-universal sets in* $\mathbb{Z}[i]$ *grows as* $\frac{\pi}{2}n + o(n)$.

In [BFS] we give a strong counterexample to their question by proving that in any Dedekind domain there exists for every *n* an *n*-universal set with n + 2 elements.

n-universal sets in number fields *n*-optimal sets

In the joint work with J.Byszewski and M. Fraczyk ([BFS]) we generalized Theorem 1 to all imaginary quadratic number fields:

Theorem 2. Let K be an imaginary quadratic number field. For large enough n there are no n-optimal sets in the ring of integers of K.

Sketch of the proof:

Let $K = \mathbb{Q}(\sqrt{-d})$ for some positive square-free integer number d. Denote by \mathcal{O}_K the ring of integers of *K*. We divide the proof into two cases. If $d \equiv 1, 2 \pmod{4}$ then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-d}]$ and one only needs to adapt the methods from [PV]. Essentially the reason why the similar argument works is the fact that we can pick a \mathbb{Z} basis of \mathcal{O}_K which is orthogonal (in usual sense). In the case $d \equiv 3 \pmod{4}$ some modifications are required as the geometry of $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-d}}{2}]$ (seen as a lattice in \mathbb{C}) is different. In where c_d is a constant depending only on d.

$$r_{\mathbb{Q}} = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{i} - \log n\right)$$

The reason why Euler-Kornecker constant appears in our considerations is explained by the following theorem due to M. Lamoureux

Theorem 4. ([*L*])

$$\log n!_K = n \log n - n(1 + \gamma_K - \gamma_Q) + o(n)$$

Using Proposition 2 we obtain the following corollary:

Corollary 1. Denote by N(I) the norm of an ideal I in \mathcal{O}_K . If S is an n-optimal subset of \mathcal{O}_K then

$$\log N(Vol(S)) = n^2 \log n - \frac{n^2}{2} - n^2 (1 + \gamma_K - \gamma_Q) + o(n^2).$$

Moreover for every subset $S_1 \subseteq \mathcal{O}_K$ *with* n + 1 *elements we have*

$$\log N(Vol(S_1)) \ge n^2 \log n - \frac{n^2}{2} - n^2(1 + \gamma_K - \gamma_Q) + o(n^2).$$

One could try to generalize Theorem 2 for any number field by comparing above estimates with ones obtained by a geometric arguments. However, it seems to be problematic in the fields with infinite group of units. Estimates from the corollary can be used to obtain the following inequality:

Theorem 5. Let U be an open bounded subset of \mathbb{R}^d . Let $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ and denote $||x|| = \prod_{i=1}^d |x_i|$ and *let m be the Lebesgue measure. We have*

$$\int_{U} \int_{U} \log ||x - y|| dx dy \ge m(U)^2 (c_d + \log m(U)),$$

the proof we used two main tools: the notion of a volume and the almost uniform distribution. Both of them were introduced by Petrov and Volkov, the only difference is that we look at the volume as an ideal rather than a real number.

Definition 4. Let A be an integral domain, S be a finite subset of A and I an ideal in A. The **volume** of a set S is the ideal: $Vol(S) = \prod_{s,s' \in S} (s - s')$

s \neq *s*['] *The set S is almost uniformly distributed modulo I if for every a, b* \in *A we have*

 $|\{s \in S | a \equiv s \pmod{I}\}| - |\{s \in S | b \equiv s \pmod{I}\}| \leq 1$

The following two propositions are crucial for the proof. They are modified/extended versions of results used in [PV]:

Proposition 1. Let K be a number field and S a subset of \mathcal{O}_K . The set S is n-universal if and only if for every non zero prime ideal \mathfrak{p} in \mathcal{O}_K there exists S_1 a subset of S with n+1 elements which is almost uniformly distributed *modulo powers of* **p**.

PEPS-égalité "Correspondances de Langlands" - Projet INTEGER (GA no 266638).

Corollary 2. Let K be a totally real number field and Δ_K be the discriminant of K. We have

$$\gamma_K \ge -\frac{1}{2}\log|\Delta_K| + \frac{3}{2}d - \frac{3}{2} + \gamma_Q$$

The estimate which we obtained for γ_K , has the same main term $-\frac{1}{2}\log|\Delta_K|$ but is slightly weaker than the one given by Ihara in [I].

Bibliography:

[B] M.Bhargava, P-orderings and polynomial finctions on arbitrary subsets of Dedekind rings, J.Reine Angew. Math. 490 (1997), pp. 101-127

[B1] M.Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), pp. 783-799

[BFS] J.Byszewski, M.Fraczyk, A.Szumowicz, Simultaneous *p*-orderings and minimising volumes in number fields, preprint, available at http://arxiv.org/abs/1506.02696

[I] Y.Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, Algebraic geometry and number thoery 253 (2006), pp.407-451

[L] M. Lamoureux, Stirling's Formula in number Fields, Doctoral Dissertations, Paper 412 (2014), http://digitalcommons. uconn.edu/dissertations/412

[PV] V.V.Volkov, F.V. Petrov, On the interpolation of integer-valued polynomials, Journal of Number Theory 133 (2013), pp.4224-4232

[W] M.Woods, P-orderings: a metric viewpoint and the non-existence of simultaneous orderings, Journal of Number Theory, 99(2003), pp.36-56

ETFX template: http://agregationchimie.free.fr/poster.php#gocontent