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Introduction
p-orderings

Bhargava introduced the notion of the generalized factorial function in the following way ([B]):
Definition 1. Let A be a Dekind domain and p a prime ideal in A. Denote by vp the additve p-adic valution in A.
Let s0, s1 · · · be a sequence of elements in A. It is called a p-ordering if for every natural number n the element sn
is chosen so that the valuation vp(∏n−1

i=0 (si − sn)) is the lowest possible. Define

in(p) = vp(
n−1

∏
i=0

(si − sn)).

It can be shown that the value of in(p) does not depend on the choice of a p-ordering. Let n be a natural number.
The generalized factorial of n is the ideal

n!A = ∏
p∈SpecA

pin(p).

For a number field K we shall write n!K := n!OK
.

It is interesting to know for which fields we can find a simultaneous p-ordering in OK, for every prime
ideal p. This is a particular case of Bhargavas question ([B1]). Melanie Woods in [W] showed that there
are no simultaneous p-orderings in imaginary quadratic number fields.

Integer valued polynomials and n-universal sets

Simultaneous p-orderings are connected with the notion of integer valued polynomials. Let A be an
integral domain and K be its field of fraction.
Definition 2. Let f be a polynomial with coefficients in K. We call f integer valued if f (A) ⊆ A.
Sometimes there is no need to check whether f (a) ∈ A for every a ∈ A to know if f is integer valued.
For example if f ∈ Z[x] then it is enough to check that f (n) ∈ Z for every natural number n.
Definition 3. We call a subset S ⊆ A n-universal if for every polynomial f ∈ K[X] of degree at most n the
following equivalence holds: f (S) ⊆ A if and only if f (A) ⊆ A.
Example All n-universal subsets of Z with n + 1 elements are of the form {a, · · · , a + n} for some
integer a.

If A is an integral domain which is not a field then any n-universal set has at least n + 1 ele-
ments. Hence, the n-universal sets with n + 1 elements are of the particular interest. We shall call them
n-optimal. It is well known that if s0, s1, s2, . . . ∈ OK is a simultaneous p-ordering for all prime ideals p,
then the initial fragments {s0, s1, . . . , ss} is an n-universal set. In particular if there are no n-optimal sets
elements for some natural number n then a simultaneous p-ordering cannot exist.

n-universal sets in Gaussian integers
Petrov and Volkov in [PV] studied the n-universal sets in Gaussian integers. They proved the following
result:
Theorem 1. There are no n-optimal sets in Z[i] for n large enough.
Petrov and Volkov were also investigating the minimal cardinality of an n-universal sets in Gaussian
integers and gave a family of examples of n-universal sets with π

2 n + o(n) elements. They conjectured
that their examples realize the asymptotic lower bound on the size of an n-universal set in Z[i]:
Conjecture 1. The size of the minimal n-universal sets in Z[i] grows as π

2 n + o(n).
In [BFS] we give a strong counterexample to their question by proving that in any Dedekind domain
there exists for every n an n-universal set with n + 2 elements.

n-universal sets in number fields
n-optimal sets

In the joint work with J.Byszewski and M. Fraczyk ([BFS]) we generalized Theorem 1 to all imaginary
quadratic number fields:
Theorem 2. Let K be an imaginary quadratic number field. For large enough n there are no n-optimal sets in the
ring of integers of K.
Sketch of the proof:
Let K = Q(

√
−d) for some positive square-free integer number d. Denote by OK the ring of integers

of K. We divide the proof into two cases. If d ≡ 1, 2 (mod 4) then OK = Z[
√
−d] and one only needs

to adapt the methods from [PV]. Essentially the reason why the similar argument works is the fact that
we can pick a Z basis of OK which is orthogonal (in usual sense). In the case d ≡ 3 (mod 4) some

modifications are required as the geometry of OK = Z[1+
√
−d

2 ] (seen as a lattice in C) is different. In
the proof we used two main tools: the notion of a volume and the almost uniform distribution. Both of
them were introduced by Petrov and Volkov, the only difference is that we look at the volume as an ideal
rather than a real number.
Definition 4. Let A be an integral domain, S be a finite subset of A and I an ideal in A. The volume of a set S is
the ideal:Vol(S) = ∏s,s′∈S

s 6=s′
(s− s

′
)

The set S is almost uniformly distributed modulo I if for every a, b ∈ A we have

|{s ∈ S|a ≡ s (mod I)}| − |{s ∈ S|b ≡ s (mod I)}| 6 1

The following two propositions are crucial for the proof. They are modified/extended versions of results
used in [PV]:
Proposition 1. Let K be a number field and S a subset of OK. The set S is n-universal if and only if for every non
zero prime ideal p in OK there exists S1 a subset of S with n + 1 elements which is almost uniformly distributed
modulo powers of p.
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Proposition 2. Let S be a subset OK with n + 1 elements. The following conditions are equivalent:
• S is n-optimal

•Vol(S) = (∏n
i=1 i!K)2

• for every S1 ⊆ OK with n + 1 elements, Vol(S) divides Vol(S1)

We return to the sketch of the proof of Theorem 2. Let us assume the contrary, that for arbitrary large
n there exists an n-optimal set S. We identify OK with its image via the embedding: OK ↪→ C. By
Proposition 2 the set S has the minimal volume. We use that information and Proposition 1 together
with a geometric arguments to show that it has to be contained in some polygon P of area that we can
control very well. We prove that S is enclosed by a rectangle in the first case when d ≡ 1, 2 (mod 4) and
by a hexagon in the second case. The estimate on the area of P implies that it contains n + o(n) points
from the latticeOK. Next, we show that for certain primes p we can find Ω(n) triples {x, y, z} in P which
give the same residue modulo p. Using Proposition 1 we show that every such triple intersects with S
in at most two points. Hence, we demonstrate that there exists a subset of OK which is contained in the
polygon, is disjoint with S and has a cardinality Ω(n). This yields a contradiction since P had n + o(n)
points and S is of cardinality n + 1.

Minimal cardinality of n-universal sets

Using the generalized version of Proposition 1 coupled with elementary arguments we obtained the
following result:
Theorem 3. Let A be a Dedekind domain. Then for every n there exists an n-universal set with n + 2 elements in
A. Moreover, there exists an increasing sequence U0 ⊆ U1 ⊆ · · · of n-universal sets Un with n + 2 elements in
A.

n-optimal sets in other number fields

The problem of existence of n-optimal sets in general number fields seems to be much harder than in
the case of imaginary quadratic number fields. In the proof of Theorem 2 we relied on fact that since
the n-optimal set has the minimal volume we can deduce a lot of information about its geometry. Un-
fortunately the method used requires the convexity of the norm NK/Q which holds only in the case
K = Q or K = Q(

√
−d). For general number fields we estimate the growth of volume of hypothetical

n-optimal sets. During our attempts to prove the Theorem 2 in the general case we discovered a link
with Euler-Kronecker constant.

Euler-Kronecker constants
By Propostion 2 studying the norm of the volume of n-optimal set is strongly tied with the generalized
factorial function. The genarlized factorials provide a link with Euler-Kronecker constants. Denote by K
a number field. Let ζK(s) be the Dedekind zeta function of K. Let ζK(s) =

c−1
s−1 + c0 + c1(s− 1) + · · · be

the Laurent expansion of Dedekind zeta function at s = 1.
Definition 5. ([I]) The Euleur−Kronecker constant γK is defined as the quotient c0

c−1
or equivalently as the

constant term of a Laurent expansion of the function γ
′

K/γK at s = 1.
If K = Q then γQ is the Euler-Mascheroni constant given by the formula

γQ = lim
n→∞

(
n
∑
i=1

1
i
− log n)

The reason why Euler-Kornecker constant appears in our considerations is explained by the following
theorem due to M. Lamoureux
Theorem 4. ([L])

log n!K = n log n− n(1 + γK − γQ) + o(n)

Using Proposition 2 we obtain the following corollary:
Corollary 1. Denote by N(I) the norm of an ideal I in OK. If S is an n-optimal subset of OK then

log N(Vol(S)) = n2 log n− n2

2
− n2(1 + γK − γQ) + o(n2).

Moreover for every subset S1 ⊆ OK with n + 1 elements we have

log N(Vol(S1)) > n2 log n− n2

2
− n2(1 + γK − γQ) + o(n2).

One could try to generalize Theorem 2 for any number field by comparing above estimates with ones
obtained by a geometric arguments. However, it seems to be problematic in the fields with infinite group
of units. Estimates from the corollary can be used to obtain the following inequality:

Theorem 5. Let U be an open bounded subset of Rd. Let x = (x1, · · · xd) ∈ Rd and denote ||x|| = ∏d
i=1 |xi| and

let m be the Lebesgue measure. We have∫
U

∫
U

log ||x− y||dxdy > m(U)2(cd + log m(U)),

where cd is a constant depending only on d.
Corollary 2. Let K be a totally real number field and ∆K be the discriminant of K. We have

γK > −1
2

log |∆K|+
3
2

d− 3
2
+ γQ

The estimate which we obtained for γK, has the same main term −1
2 log |∆K| but is slightly weaker than

the one given by Ihara in [I].
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