MINIMISING VOLUMES IN NUMBER FIELDS

Anna Szumowicz

Jagiellonian University

Introduction

\mathfrak{p}-orderings

Bhargava introduced the notion of the generalized factorial function in the following way ([B]):
Definition 1. Let A be a Dekind domain and \mathfrak{p} a prime ideal in A. Denote by $v_{\mathfrak{p}}$ the additve \mathfrak{p}-adic valution in A, Let $s_{0}, s_{1} \cdots$ be a sequence of elements in A. It is called $a \mathfrak{p}$-ordering if for every natural number n the element s_{n} is chosen so that the valuation $v_{\mathfrak{p}}\left(\prod_{i=0}^{n-1}\left(s_{i}-s_{n}\right)\right)$ is the lowest possible. Define

$$
i_{n}(\mathfrak{p})=v_{\mathfrak{p}}\left(\prod_{i=0}^{n-1}\left(s_{i}-s_{n}\right)\right)
$$

It can be shown that the value of $i_{n}(\mathfrak{p})$ does not depend on the choice of a \mathfrak{p}-ordering. Let n be a natural number. The generalized factorial of n is the ideal

$$
n!_{A}=\prod_{\mathfrak{p} \in S \text { Sec } A} \mathfrak{p}^{i_{n}(\mathfrak{p})} .
$$

For a number field K we shall write $n!_{K}:=n!\mathcal{O}_{K}$.
It is interesting to know for which fields we can find a simultaneous \mathfrak{p}-ordering in \mathcal{O}_{K}, for every prime ideal \mathfrak{p}. This is a particular case of Bhargavas question ([B1]). Melanie Woods in [W] showed that there are no simultaneous \mathfrak{p}-orderings in imaginary quadratic number fields.

Integer valued polynomials and n-universal sets

Simultaneous \mathfrak{p}-orderings are connected with the notion of integer valued polynomials. Let A be an integral domain and K be its field of fraction.
Definition 2. Let f be a polynomial with coefficients in K. We call f integer valued if $f(A) \subseteq A$.
Sometimes there is no need to check whether $f(a) \in A$ for every $a \in A$ to know if f is integer valued. For example if $f \in \mathbb{Z}[x]$ then it is enough to check that $f(n) \in \mathbb{Z}$ for every natural number n.
Definition 3. We call a subset $S \subseteq A$-universal if for every polynomial $f \in K[X]$ of degree at most n the following equivalence holds: $f(S) \subseteq A$ if and only if $f(A) \subseteq A$.
Example All n-universal subsets of \mathbb{Z} with $n+1$ elements are of the form $\{a, \cdots, a+n\}$ for some integer a.

If A is an integral domain which is not a field then any n-universal set has at least $n+1$ elements. Hence, the n-universal sets with $n+1$ elements are of the particular interest. We shall call them n-optimal. It is well known that if $s_{0}, s_{1}, s_{2}, \ldots \in \mathcal{O}_{K}$ is a simultaneous \mathfrak{p}-ordering for all prime ideals \mathfrak{p}, then the initial fragments $\left\{s_{0}, s_{1}, \ldots, s_{s}\right\}$ is an n-universal set. In particular if there are no n-optimal sets elements for some natural number n then a simultaneous \mathfrak{p}-ordering cannot exist.

n-universal sets in Gaussian integers

Petrov and Volkov in [PV] studied the n-universal sets in Gaussian integers. They proved the following result:
Theorem 1. There are no n-optimal sets in $\mathbb{Z}[i]$ for n large enough.
Petrov and Volkov were also investigating the minimal cardinality of an n-universal sets in Gaussian integers and gave a family of examples of n-universal sets with $\frac{\pi}{2} n+o(n)$ elements. They conjectured that their examples realize the asymptotic lower bound on the size of an n-universal set in $\mathbb{Z}[i]$: Conjecture 1. The size of the minimal n-universal sets in $\mathbb{Z}[i]$ grows as $\frac{\pi}{2} n+o(n)$.
In [BFS] we give a strong counterexample to their question by proving that in any Dedekind domain there exists for every n an n-universal set with $n+2$ elements.

n-universal sets in number fields n-optimal sets

In the joint work with J.Byszewski and M. Fraczyk ([BFS]) we generalized Theorem 1 to all imaginary quadratic number fields:
Theorem 2. Let K be an imaginary quadratic number field. For large enough n there are no n-optimal sets in the ring of integers of K.

Sketch of the proof:

Let $K=\mathbb{Q}(\sqrt{-d})$ for some positive square-free integer number d. Denote by \mathcal{O}_{K} the ring of integers of K. We divide the proof into two cases. If $d \equiv 1,2(\bmod 4)$ then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-d}]$ and one only needs to adapt the methods from [PV]. Essentially the reason why the similar argument works is the fact that we can pick a \mathbb{Z} basis of \mathcal{O}_{K} which is orthogonal (in usual sense). In the case $d \equiv 3(\bmod 4)$ some modifications are required as the geometry of $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ (seen as a lattice in \mathbb{C}) is different. In the proof we used two main tools: the notion of a volume and the almost uniform distribution. Both of them were introduced by Petrov and Volkov, the only difference is that we look at the volume as an ideal rather than a real number.
Definition 4. Let A be an integral domain, S be a finite subset of A and I an ideal in A. The volume of a set S is the ideal: $\operatorname{Vol}(S)=\prod_{s, s^{\prime} \in S^{\prime}}\left(s-s^{\prime}\right)$
The set S is almost uniformly distributed modulo I if for every $a, b \in A$ we have

$$
|\{s \in S \mid a \equiv s \quad(\bmod I)\}|-|\{s \in S \mid b \equiv s \quad(\bmod I)\}| \leqslant 1
$$

The following two propositions are crucial for the proof. They are modified/extended versions of results used in [PV]:
Proposition 1. Let K be a number field and S a subset of \mathcal{O}_{K}. The set S is n-universal if and only if for every non zero prime ideal \mathfrak{p} in \mathcal{O}_{K} there exists S_{1} a subset of S with $n+1$ elements which is almost uniformly distributed modulo powers of \mathfrak{p}.

INTEGER
INTEGER

Proposition 2. Let S be a subset \mathcal{O}_{K} with $n+1$ elements. The following conditions are equivalent:

- S is n-optimal
- $\operatorname{Vol}(S)=\left(\prod_{i=1}^{n} i!_{K}\right)^{2}$
- for every $S_{1} \subseteq \mathcal{O}_{K}$ with $n+1$ elements, $\operatorname{Vol}(S)$ divides $\operatorname{Vol}\left(S_{1}\right)$

We return to the sketch of the proof of Theorem 2. Let us assume the contrary, that for arbitrary large n there exists an n-optimal set S. We identify \mathcal{O}_{K} with its image via the embedding: $\mathcal{O}_{K} \hookrightarrow \mathbb{C}$. By Proposition 2 the set S has the minimal volume. We use that information and Proposition 1 together with a geometric arguments to show that it has to be contained in some polygon P of area that we can control very well. We prove that S is enclosed by a rectangle in the first case when $d \equiv 1,2(\bmod 4)$ and by a hexagon in the second case. The estimate on the area of P implies that it contains $n+o(n)$ points from the lattice \mathcal{O}_{K}. Next, we show that for certain primes p we can find $\Omega(n)$ triples $\{x, y, z\}$ in P which give the same residue modulo p. Using Proposition 1 we show that every such triple intersects with S in at most two points. Hence, we demonstrate that there exists a subset of \mathcal{O}_{K} which is contained in the polygon, is disjoint with S and has a cardinality $\Omega(n)$. This yields a contradiction since P had $n+o(n)$ points and S is of cardinality $n+1$.

Minimal cardinality of n-universal sets

Using the generalized version of Proposition 1 coupled with elementary arguments we obtained the following result:
Theorem 3. Let A be a Dedekind domain. Then for every n there exists an n-universal set with $n+2$ elements in A. Moreover, there exists an increasing sequence $U_{0} \subseteq U_{1} \subseteq \cdots$ of n-universal sets U_{n} with $n+2$ elements in A.

n-optimal sets in other number fields

The problem of existence of n-optimal sets in general number fields seems to be much harder than in the case of imaginary quadratic number fields. In the proof of Theorem 2 we relied on fact that since the n-optimal set has the minimal volume we can deduce a lot of information about its geometry. Unfortunately the method used requires the convexity of the norm $N_{K / Q}$ which holds only in the case $K=\mathbb{Q}$ or $K=\mathbb{Q}(\sqrt{-d})$. For general number fields we estimate the growth of volume of hypothetical n-optimal sets. During our attempts to prove the Theorem 2 in the general case we discovered a link with Euler-Kronecker constant.

Euler-Kronecker constants

By Propostion 2 studying the norm of the volume of n-optimal set is strongly tied with the generalized factorial function. The genarlized factorials provide a link with Euler-Kronecker constants. Denote by K a number field. Let $\zeta_{K}(s)$ be the Dedekind zeta function of K. Let $\zeta_{K}(s)=\frac{c_{-1}}{s-1}+c_{0}+c_{1}(s-1)+\cdots$ be the Laurent expansion of Dedekind zeta function at $s=1$.
Definition 5. ([I]) The Euleur - Kronecker constant γ_{K} is defined as the quotient $\frac{c_{0}}{\mathcal{C}_{-1}}$ or equivalently as the constant term of a Laurent expansion of the function $\gamma_{K}^{\prime} / \gamma_{K}$ at $s=1$.
If $K=\mathbb{Q}$ then $\gamma_{\mathbb{Q}}$ is the Euler-Mascheroni constant given by the formula

$$
\gamma_{\mathrm{Q}}=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \frac{1}{i}-\log n\right)
$$

The reason why Euler-Kornecker constant appears in our considerations is explained by the following theorem due to M. Lamoureux
Theorem 4. ([L])

$$
\log n!_{K}=n \log n-n\left(1+\gamma_{K}-\gamma_{Q}\right)+o(n)
$$

Using Proposition 2 we obtain the following corollary:
Corollary 1. Denote by $N(I)$ the norm of an ideal I in \mathcal{O}_{K}. If S is an n-optimal subset of \mathcal{O}_{K} then

$$
\log N(\operatorname{Vol}(S))=n^{2} \log n-\frac{n^{2}}{2}-n^{2}\left(1+\gamma_{K}-\gamma_{\mathbf{Q}}\right)+o\left(n^{2}\right)
$$

Moreover for every subset $S_{1} \subseteq \mathcal{O}_{K}$ with $n+1$ elements we have

$$
\log N\left(\operatorname{Vol}\left(S_{1}\right)\right) \geqslant n^{2} \log n-\frac{n^{2}}{2}-n^{2}\left(1+\gamma_{K}-\gamma_{\mathbf{Q}}\right)+o\left(n^{2}\right)
$$

One could try to generalize Theorem 2 for any number field by comparing above estimates with ones obtained by a geometric arguments. However, it seems to be problematic in the fields with infinite group of units. Estimates from the corollary can be used to obtain the following inequality:
Theorem 5. Let U be an open bounded subset of \mathbb{R}^{d}. Let $x=\left(x_{1}, \cdots x_{d}\right) \in \mathbb{R}^{d}$ and denote $\|x\|=\prod_{i=1}^{d}\left|x_{i}\right|$ and let m be the Lebesgue measure. We have

$$
\int_{U} \int_{U} \log \|x-y\| d x d y \geqslant m(U)^{2}\left(c_{d}+\log m(U)\right)
$$

where c_{d} is a constant depending only on d.
Corollary 2. Let K be a totally real number field and Δ_{K} be the discriminant of K. We have

$$
\gamma_{K} \geqslant-\frac{1}{2} \log \left|\Delta_{K}\right|+\frac{3}{2} d-\frac{3}{2}+\gamma_{Q}
$$

The estimate which we obtained for γ_{K}, has the same main term $-\frac{1}{2} \log \left|\Delta_{K}\right|$ but is slightly weaker than the one given by Ihara in [I].

Bibliography:

[B] M.Bhargava, P-orderings and polynomial finctions on arbitrary subsets of Dedekind rings, J.Reine Angew. Math. 490 (1997), pp. 101-127
[B1] M.Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), pp. 783-799 availaible at http://arxiv.org/abs/1506.02696
[I] Y.Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, Algebraic geometry and number thoery 253 (2006), pp.407-451
[L] M. Lamoureux, Stirling's Formula in number Fields, Doctoral Dissertations, Paper 412 (2014),http://digitalcommons. uconn.edu/dissertations/412
[PV] V.V.Volkov, F.V. Petrov, On the interpolation of integer-valued polynomials, Journal of Number Theory 133 (2013), p. $4224-4232$

W] M.Woods, P-orderings: a metric viewpoint and the non-existence of simultaneous orderings, Journal of Number Theory, 99(2003), pp.36-56
LTEX template: http://agregationchimie.free.fr/poster.php\#gocontent

