Bernstein center of supercuspidal blocks Manish Mishra

University of Heidelberg

manish.mishra@gmail.com

Abstract

Let G be a tamely ramified connected reductive group defined over a non-archimedean local field k. We show that the Bernstein center of a tame supercuspidal Bernstein block of G(k) is isomorphic to the Bernstein center of a depth zero supercuspidal block of a twisted Levi subgroup of G(k). As a consequence, we obtain that the centers of the Hecke algebras in Yu's conjecture are isomorphic. We also give a Galois side analogue of the finiteness condition satisfied by supercuspidal blocks.

Introduction

Let G be a connected reductive group defined over a non archimedean local field k. Assume that G splits over a tamely ramified extension k^t of k. We will denote the group of k-rational points of G by G and likewise for other algebraic groups. In [5], Jiu-Kang Yu gives a very general constuction of a class of supersuspidal representations of C which he calls tame. A tame supersuspidal representation

PEPS-égalité "Correspondances de Langlands" - Projet INTEGER (GA no 266638).

Theorem 1 (Yu). $\pi_{\Sigma} := c \operatorname{-Ind}_{K^d}^G \rho_{\Sigma}$ is irreducible and thus supercuspidal.

3 Bernstein center and Bernstein decomposition

In [3, Section 7], Kottwitz defined a functorial homomorphism $\kappa'_G : G \to X_*(\mathbf{Z}_G)_{I_k}^{\mathrm{Fr}}$. The map κ'_G induces a functorial surjective map:

$$\kappa_G : G \to X_*(\mathbf{Z}_G)_{I_k}^{\mathrm{Fr}} / \operatorname{torsion}.$$
(1)

Let $^{\circ}G := \ker(\kappa_G)$ and let $X_{nr}(G) := \operatorname{Hom}(G/^{\circ}G, \mathbb{C}^{\times})$ denote the group of *unramified characters* of *G*.

Consider the collection of all cuspidal pairs (L, σ) consisting of a Levi subgroup L of G and an irreducible cuspidal representation σ of L. Define an equivalence relation \sim on the class of all cuspidal

a class of supercuspidal representations of G which he calls *tame*. A tame supercuspidal representation $\pi = \pi_{\Sigma}$ of G is constructed out of a depth zero supercuspidal representation π_0 of G^0 and some additional data, where \mathbf{G}^0 is a *twisted* Levi subgroup of \mathbf{G} . By twisted, we mean that $\mathbf{G}^0 \otimes k^t$ is a Levi factor of a parabolic subgroup of $\mathbf{G} \otimes k^t$. The additional data, together with \mathbf{G}^0 and π_0 is what we are denoting by Σ in the notation π_{Σ} . In [2], Kim showed that under certain hypothesis, which are met for instance when the residue characteristic is large, these tame supercuspidals exhaust all the supercuspidals of G.

The depth zero supercuspidal π_0 of G^0 is compactly induced from (K^0, ϱ_0) where K^0 is a compact mod center open subgroup of G^0 and ϱ_0 is a representation of K^0 . The constructed representation π_{Σ} is compactly induced from (K, ϱ) , where K is a compact mod center open subgroup of G containing K^0 and ϱ is a representation of K. The representation ϱ is of the form $\varrho_0 \otimes \kappa$, where ϱ_0 is seen as a representation of K by extending from K^0 trivially and κ is a representation of K constructed out of the part of Σ which is independent of ϱ_0 .

Let \mathfrak{Z}^{π} (resp. $\mathfrak{Z}_{0}^{\pi_{0}}$) denote the *Bernstein center* of the *Bernstein block* (see Section 3 for these terms) of *G* (resp. G^{0}) containing π (resp. π_{0}). We show that

Theorem. $\mathfrak{Z}^{\pi} \cong \mathfrak{Z}_0^{\pi_0}$. Thus, the Bernstein center of a tame supercuspidal block of G is isomorphic to the Bernstein center of a depth zero supercuspidal block of a twisted Levi subgroup of G.

Let $\mathcal{H}(G, \varrho)$ (resp. $\mathcal{H}(G^0, \varrho_0)$) denote the Hecke algebra of the type constucted out of (K, ϱ) (resp. (K^0, ϱ_0)) (see [1, Sec. 5.4]). As a consequence of the above theorem, we obtain

 $Z(\mathcal{H}(G,\varrho)) \cong Z(\mathcal{H}(G^0,\varrho_0)).$

For a compact open subgroup J of G, a well known theorem of Bernstein states that there exist only finitely many supercuspidal Bernstein blocks having a J-spherical representation. In Theorem 7, we give a Galois side analogue of this result.

pairs by

 $(L,\sigma) \sim (M,\tau)$ if ${}^{g}L = M$ and ${}^{g}\sigma \cong \tau\nu$,

for some $g \in G$ and some $\nu \in X_{nr}(M)$. Write $[L, \sigma]$ for the equivalence class of (L, σ) and $\mathfrak{B}(G)$ for the set of all equivalence classes. The set $\mathfrak{B}(G)$ is called the *Bernstein spectrum* of G. We say that a smooth irreducible representation π has *inertial support* $s := [L, \sigma]$ if π appears as a subquotient of a representation parabolically induced from some element of \mathfrak{s} . Define a full subcategory $\mathfrak{R}^{\mathfrak{s}}(G)$ of $\mathfrak{R}(G)$ as follows: a smooth representation π belongs to $\mathfrak{R}^{\mathfrak{s}}(G)$ iff each irreducible subquotient of π has inertial support \mathfrak{s} .

Theorem 2 (Bernstein). We have

$$\Re(G) = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} \mathfrak{R}^{\mathfrak{s}}(G).$$

Definition 3. The endomorphism ring of the identity functor of $\mathfrak{R}(G)$ (resp. $\mathfrak{R}(G)^{\mathfrak{s}}$) is called the *Bernstein center* of $\mathfrak{R}(G)$ (resp. $\mathfrak{R}(G)^{\mathfrak{s}}$).

4 Centers of supercuspidal blocks

We use the notations of Section 2. So G is a connected reductive group over $k, \Sigma = (\overrightarrow{G}, y, \overrightarrow{r}, \overrightarrow{\phi}, \rho)$ is a generic G-datum, $K^0 = G^0_{[y]}$ and $K^i = G^0_{[y]}G^1_{y,s_0}\cdots G^i_{y,s_{i-1}}$ where $s_j = r_j/2$ for i = 1, ..., d. Then in [5], Yu constructs a representation ρ_{Σ} of K^d such that $\pi_{\Sigma} := c \cdot \operatorname{Ind}_{K^d}^G \rho_{\Sigma}$ is irreducible and thus supercuspidal. The representation $\pi_0 = c \cdot \operatorname{Ind}_{K^0}^{G^0} \rho$ is depth zero supercuspidal. Write ${}^{\circ}K^d := K^d \cap {}^{\circ}G$ (resp. ${}^{\circ}K^0 := K^0 \cap {}^{\circ}G^0$) and ${}^{\circ}\rho_{\Sigma} := \rho_{\Sigma}|{}^{\circ}K^d$ (resp. ${}^{\circ}\rho = \rho|{}^{\circ}K^0$). Here ${}^{\circ}G$ is as defined in Section 3. Then $({}^{\circ}K^d, {}^{\circ}\rho_{\Sigma})$ (resp. $({}^{\circ}K, {}^{\circ}\rho)$) is an $\mathfrak{s} := [G, \pi_{\Sigma}]_G$ (resp. $\mathfrak{s}_0 := [G^0, \pi_0]_{G^0}$) type [5, Corr. 15.3]. Let $\mathfrak{Z}(G)$ (resp. $\mathfrak{Z}(G)^{\mathfrak{s}}$, resp. $\mathfrak{Z}(G^0)^{\mathfrak{s}_0}$) be the Bernstein center of the category $\mathfrak{R}(G)$ (resp. $\mathfrak{R}(G)^{\mathfrak{s}}$, resp. $\mathfrak{R}(G^0)^{\mathfrak{s}_0}$).

1 Notations

Throughout this poster, k denotes a non-archimedean local field. For an algebraic group G defined over k, we will denote its k-rational points by G. Center of G will be denoted by \mathbb{Z}_{G} . The category of smooth representations of G will be denoted by $\Re(G)$. Let W_k denote the Weil group of k and I_k denote its inertia subgroup. We fix a Frobenius element Fr in W_k .

2 Yu's construction [5]

Let G be a connected reductive group defined over a non-archimedean local field k. A twisted k-Levi subgroup G' of G is a reductive k-subgroup such that $\mathbf{G}' \otimes_k \bar{k}$ is a Levi subgroup of $\mathbf{G} \otimes_k \bar{k}$. Yu's construction involves the notion of a generic G-datum. It is a quintuple $\Sigma = (\vec{\mathbf{G}}, y, \vec{r}, \vec{\phi}, \rho)$ satisfying the following:

1. $\vec{\mathbf{G}} = (\mathbf{G}^0 \subsetneq \mathbf{G}^1 \subsetneq \ldots \subsetneq \mathbf{G}^d = \mathbf{G})$ is a tamely ramified twisted Levi sequence such that $\mathbf{Z}_{\mathbf{G}^0}/\mathbf{Z}_G$ is anisotropic.

2. y is a point in the extended Bruhat-Tits building of \mathbf{G}^0 over k.

3. $\overrightarrow{r} = (r_0, r_1, \cdots, r_{d-1}, r_d)$ is a sequence of positive real numbers with $0 < r_0 < \cdots < r_{d-2} < r_{d-1} \leq r_d$ if $d > 0, 0 \leq r_0$ if d = 0.

4. $\overrightarrow{\phi} = (\phi_0, \dots, \phi_d)$ is a sequence of quasi-characters, where ϕ_i is a G^{i+1} -generic quasi-character [5, Sec. 9] of G^i ; ϕ_i is trivial on G^i_{y,r_i+} , but nontrivial on G^i_{y,r_i} for $0 \le i \le d-1$. If $r_{d-1} < r_d$, ϕ_d is nontrivial on G^i_{y,r_d} and trivial on G^d_{y,r_d+} . Otherwise, $\phi_d = 1$. Here $G^i_{y,\cdot}$ denote the filtration subgroups of the parahoric at y defined by Moy-Prasad (see [4]). **Theorem 4.** The Bernstein center of a tame supercuspidal block of G is isomorphic to the Bernstein center of a depth zero supercuspidal block of a twisted Levi subgroup of G. More precisely, $\mathfrak{Z}(G)^{\mathfrak{s}} \cong \mathfrak{Z}(G^0)^{\mathfrak{s}_0}$.

For an algebra \mathcal{A} , denote by $Z(\mathcal{A})$ the center of \mathcal{A} . Let $\mathcal{H}(G, \rho_{\Sigma})$ (resp. $\mathcal{H}(G^0, \rho)$) denote the Hecke algebra of the type (° K^d , ° ρ_{Σ}) (resp. (° K^0 , ° ρ)).

Corollary 5. $Z(\mathcal{H}(G, \rho_{\Sigma})) \cong Z(\mathcal{H}(G^0, \rho)).$

Now suppose that π_{Σ} satisfied the conditions (5.5) of [1]. These are satisfied for instance when $\mathbf{G} = \mathrm{GL}(n,k)$. In that case, $\mathcal{H}(G,\rho_{\Sigma})$ is commutative. In this situation we have: Corollary 6. $\mathcal{H}(G,\rho_{\Sigma}) \cong \mathcal{H}(G^0,\rho)$.

5 A result on the parameters attached to supercuspidal blocks

Let $\Phi(G)$ denote the set of Langlands parameters of G. We have a well defined action

$$\mathrm{H}^{1}(W_{k}, Z(\hat{\mathbf{G}})) \times \Phi(G) \to \Phi(G), \qquad [\alpha] \cdot [\phi] \mapsto [\alpha \cdot \phi], \tag{2}$$

where $Z(\hat{\mathbf{G}})$ is the center of the complex dual $\hat{\mathbf{G}}$ of \mathbf{G}

Kottwitz homomorphism allows one to get a canonical isomorphism $X_{nr}(G) \cong$ $\mathrm{H}^{1}(W_{k}/I_{k}, (Z(\hat{\mathbf{G}})^{I_{k}})^{\circ})$. This gives an action of $X_{nr}(G)$ on $\Phi(G)$.

Theorem 7. Let **G** be a connected reductive group over k. Then up to $X_{nr}(G)$ -action, there exist only finitely many discrete Langlands parameters for G which are trivial on a given compact open normal subgroup of W_k .

5. ρ is an irreducible representation of G⁰_[y], the stabilizer in G⁰ of the image [y] of y in the reduced building of G⁰, such that ρ|G⁰_{y,0+} is isotrivial and c-Ind^{G⁰}_{G⁰_[y]} ρ is irreducible and supercuspidal.
Let K⁰ = G⁰_[y] and Kⁱ = G⁰_[y]G¹_{y,s0} ··· Gⁱ_{y,si-1} where s_j = r_j/2 for i = 1,...,d. In [5, Sec. 11], Yu constructs certain representation κ of K^d which is independent of ρ and constructed only out of (G
, y, r
, φ). Extend ρ trivially to a representation of K^d and write ρ_Σ := ρ ⊗ κ.

Acknowledgements

The author would like to thank Rainer Weissauer, Dipendra Prasad, Sandeep Varma and Jeff Adler for many helpful insights.

References

[1] Colin J. Bushnell and Philip C. Kutzko. Smooth representations of reductive p-adic groups: structure theory via types. Proc. London Math. Soc. (3), 77(3):582–634, 1998.

[2] Ju-Lee Kim. Supercuspidal representations: an exhaustion theorem. J. Amer. Math. Soc., 20(2):273–320 (electronic), 2007.

[3] Robert E. Kottwitz. Isocrystals with additional structure. II. Compositio Math., 109(3):255–339, 1997.

[4] Allen Moy and Gopal Prasad. Unrefined minimal *K*-types for *p*-adic groups. *Invent. Math.*, 116(1-3):393–408, 1994.

[5] Jiu-Kang Yu. Construction of tame supercuspidal representations. J. Amer. Math. Soc., 14(3):579–622 (electronic), 2001.